

ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

(A Statutory body of the Government of Andhra Pradesh)

3rd,4th and 5th floors, Neeladri Towers,Sri Ram Nagar,6th Battalion Road, Atmakur(V),Mangalagiri(M), Guntur-522 503, Andhra Pradesh **Web**:www.apsche.org **Email**: acapsche@gmail.com

REVISED SYLLABUS OF B.Sc. (COMPUTER SCIENCE/ INFORMATION TECHNOLOGY) UNDER CBCS FRAMEWORK WITH EFFECT FROM 2020-2021

PROGRAMME: FOUR-YEAR UG HONOURS PROGRAMME

B.Sc. Computer Science/ Information Technology (IT)

(With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities & Model O.P.)

For Fifteen Courses of 1, 2, 3 & 4 Semesters)

(To be Implemented from 2020-21 Academic Year)

Structure of Computer Science /Information Technology (IT)

Programme: B.Sc. with Computer Science as one of the Core Subjects.

Discipline: Computer Science

Year	Semester	Paper Code	Subject	Hrs. per Week	Credits	IA	ES	Total
	I	C1	Problem Solving in C	4	3	25	75	100
First	I	C1-P	Problem Solving in C Lab	2	2		50	50
Year	II	C2	Data Structures using C	4	3	25	75	100
	II	C2-P	Data Structures using C Lab 2 2		2		50	50
	III	C3	Database Management System 4 3				75	100
	III	С3-Р	Database Management System Lab	2	2		50	50
Second	IV	C4	Object Oriented Programming using Java	4	3	25	75	100
Year	IV	C4-P	Object Oriented Programming using Java Lab	2	2		50	50
	IV	C5	Operating Systems	4	3	25	75	100
	IV	C5-P	Operating Systems Lab using C/Java		2		50	50

PROBLEM SOLVING IN C

Semester	Course Code	Course Title	Hours	Credits
I	C1	PROBLEM SOLVING IN C	60	3

Objectives:

This course aims to provide exposure to problem-solving through programming. It introduces the concepts of the C Programming language.

Course Learning Outcomes:

Upon successful completion of the course, a student will be able to:

- 1. Understand the evolution and functionality of a Digital Computer.
- 2. Apply logical skills to analyse a given problem
- 3. Develop an algorithm for solving a given problem.
- 4. Understand 'C' language constructs like Iterative statements, Array processing, Pointers, etc.
- 5. Apply 'C' language constructs to the algorithms towrite a 'C' language program.

UNIT I

General Fundamentals: Introduction to computers: Block diagram of a computer, characteristics and limitations of computers, applications of computers, types of computers, computer generations.

Introduction to Algorithms and Programming Languages: Algorithm – Key features of Algorithms, Flow Charts, Programming Languages – Generations of Programming Languages – Structured Programming Language- Design and Implementation of Correct, Efficient and Maintainable Programs.

UNIT II

Introduction to C: Introduction – Structure of C Program – Writing the first C Program – File used in C Program – Compiling and Executing C Programs – Using Comments –

Keywords – Identifiers – Basic Data Types in C – Variables – Constants – I/O Statements in C- Operators in C- Programming Examples.

Decision Control and Looping Statements: Introduction to Decision Control Statements—Conditional Branching Statements — Iterative Statements — Nested Loops — Break and Continue Statement — Goto Statement

UNIT III

Arrays: Introduction – Declaration of Arrays – Accessing elements of the Array – Storing Values in Array– Operations on Arrays – one dimensional, two dimensional and multi dimensional arrays, character handling and strings.

UNIT IV

Functions: Introduction – using functions – Function declaration/ prototype – Function definition – function call – return statement – Passing parameters – Scope of variables – Storage Classes – Recursive functions.

Structure, Union, and Enumerated Data Types: Introduction – Nested Structures – Arrays of Structures – Structures and Functions– Union – Arrays of Unions Variables – Unions inside Structures – Enumerated Data Types.

UNIT V

Pointers: Understanding Computer Memory – Introduction to Pointers – declaring Pointer Variables – Pointer Expressions and Pointer Arithmetic – Null Pointers - Passing Arguments to Functions using Pointer – Pointer and Arrays – Memory Allocation in C Programs – Memory Usage – Dynamic Memory Allocation – Drawbacks of Pointers

Files: Introduction to Files – Using Files in C – Reading Data from Files – Writing Data to Files – Detecting the End-of-file – Error Handling during File Operations – Accepting Command Line Arguments.

BOOKS

- 1. E Balagurusamy Programming in ANSIC Tata McGraw-Hill publications.
- 2. Brain W Kernighan and Dennis M Ritchie The 'C' Programming language" Pearson publications.
- 3. Ashok N Kamthane: Programming with ANSI and Turbo C, Pearson Edition Publications.
- 4. YashavantKanetkar Let Us 'C' BPB Publications.

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

A. Measurable

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity))
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- 4. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity

B. General

- 1. Group Discussion
- 2. Try to solve MCQ's available online.
- 3. Others

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Problem-solving exercises,
- 4. Practical assignments and laboratory reports,

- 5. Observation of practical skills,
- 6. Individual and group project reports like "Creating Text Editor in C".
- 7. Efficient delivery using seminar presentations,
- 8. Viva voce interviews.
- 9. Computerized adaptive testing, literature surveys and evaluations,
- 10. Peers and self-assessment, outputs form individual and collaborative work

\$ Semester	Course Code	Course Title	Hours	Credits
I	C1-P	PROBLEM SOLVING IN C LAB	30	2

Problem solving in C LAB

- 1. Write a program to check whether the given number is Armstrong or not.
- 2. Write a program to find the sum of individual digits of a positive integer.
- 3. Write a program to generate the first n terms of the Fibonacci sequence.
- 4. Write a program to find both the largest and smallest number in a list of integer values
- **5.** Write a program to demonstrate reflection of parameters in swapping of two integer values using **Call by Value&Call by Address**
- 6. Write a program that uses functions to add two matrices.
- 7. Write a program to calculate factorial of given integer value using recursive functions
- 8. Write a program for multiplication of twoN X N matrices.
- 9. Write a program to perform various string operations.
- 10. Write a program to search an element in a given list of values.
- 11. Write a program to sort a given list of integers in ascending order.
- 12. Write a program to calculate the salaries of all employees using *Employee* (*ID*, *Name*, *Designation*, *Basic Pay*, *DA*, *HRA*, *Gross Salary*, *Deduction*, *Net Salary*) structure.
 - a. DA is 30 % of Basic Pay
 - b. HRA is 15% of Basic Pay
 - c. Deduction is 10% of (Basic Pay + DA)
 - d. Gross Salary = Basic Pay + DA + HRA
 - e. Net Salary = Gross Salary Deduction
- 13. Write a program to illustrate pointer arithmetic.

- 14. Write a program to read the data character by character from a file.
- 15. Write a program to create Book (ISBN, Title, Author, Price, Pages, Publisher) structure and store book details in a file and perform the following operations
 - a. Add book details
 - b. Search a book details for a given ISBN and display book details, if available
 - c. Update a book details using ISBN
 - d. Delete book details for a given ISBN and display list of remaining Books

DATA STRUCTURES USING C

Semester	Course Code	Course Title	Hours	Credits
II	C2	DATA STRUCTURES USING C	60	3

Course Objectives

To introduce the fundamental concept of data structures and to emphasize the importance of various data structures in developing and implementing efficient algorithms.

Course Learning Outcomes:

Upon successful completion of the course, a student will be able to:

- 1. Understand available Data Structures for data storage and processing.
- 2. ComprehendData Structure and their real-time applications Stack, Queue, Linked List, Trees and Graph
- 3. Choose a suitable Data Structures for an application
- 4. Develop ability to implement different Sorting and Search methods
- 5. Have knowledge onData Structures basic operations like insert, delete, search,update and traversal
- 6. Design and develop programs using various data structures
- 7. Implement the applications of algorithms for sorting, pattern matching etc

UNIT – I:

Introduction to Data Structures: Introduction to the Theory of Data Structures, Data Representation, Abstract Data Types, Data Types, Primitive Data Types, Data Structure and Structured Type, Atomic Type, Difference between Abstract Data Types, Data Types, and Data Structures, Refinement Stages

Principles of Programming and Analysis of Algorithms: Software Engineering, Program Design, Algorithms, Different Approaches to Designing an Algorithm, Complexity, Big 'O' Notation, Algorithm Analysis, Structured Approach to Programming, Recursion, Tips and Techniques for Writing Programs in 'C'

UNIT - II:

Arrays: Introduction to Linear and Non- Linear Data Structures, One- Dimensional Arrays, Array Operations, Two- Dimensional arrays, Multidimensional Arrays, Pointers and Arrays, an Overview of Pointers

Linked Lists: Introduction to Lists and Linked Lists, Dynamic Memory Allocation, Basic Linked List Operations, Doubly Linked List, Circular Linked List, Atomic Linked List, Linked List in Arrays, Linked List versus Arrays

UNIT - III:

Stacks: Introduction to Stacks, Stack as an Abstract Data Type, Representation of Stacks through Arrays, Representation of Stacks through Linked Lists, Applications of Stacks, Stacks and Recursion

Queues: Introduction, Queue as an Abstract data Type, Representation of Queues, Circular Queues, Double Ended Queues- Deques, Priority Queues, Application of Queues

UNIT - IV:

Binary Trees: Introduction to Non- Linear Data Structures, Introduction Binary Trees, Types of Trees, Basic Definition of Binary Trees, Properties of Binary Trees, Representation of Binary Trees, Operations on a Binary Search Tree, Binary Tree Traversal, Counting Number of Binary Trees, Applications of Binary Tree

UNIT - V:

Searching and sorting: Sorting – An Introduction, Bubble Sort, Insertion Sort, Merge Sort, Searching – An Introduction, Linear or Sequential Search, Binary Search, Indexed Sequential Search

Graphs: Introduction to Graphs, Terms Associated with Graphs, Sequential Representation of Graphs, Linked Representation of Graphs, Traversal of Graphs, Spanning Trees, Shortest Path, Application of Graphs.

BOOKS:

1. "Data Structures using C", ISRD group Second Edition, TMH

- 2. "Data Structures through C", Yashavant Kanetkar, BPB Publications
- 3. "Data Structures Using C" Balagurusamy E. TMH

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

A. Measurable

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity))
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- 4. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity))

B. General

- 1. Group Discussion
- 2. Others

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Programming exercises,
- 4. Practical assignments and laboratory reports,
- 5. Observation of practical skills,
- 6. Individual and group project reports.
- 7. Efficient delivery using seminar presentations,
- 8. Viva voce interviews.
- 9. Computerized adaptive testing, literature surveys and evaluations,
- 10. Peers and self-assessment, outputs form individual and collaborative work

Semester	Course Code	Course Title	Hours	Credits
II	С2-Р	DATA STRUCTURES USING C	30	2
		LAB		

- 1. Write a program to read 'N' numbers of elements into an array and also perform the following operation on an array
 - a. Add an element at the begging of an array
 - b. Insert an element at given index of array
 - c. Update a element using a values and index
 - d. Delete an existing element
- 2. Write a program using stacks to convert a given
 - a. postfix expression to prefix
 - b. prefix expression to postfix
 - c. infix expression to postfix
- 3. Write Programs to implement the Stack operations using an array
- 4. Write Programs to implement the Stack operations using Liked List.
- 5. Write Programs to implement the Queue operations using an array.
- 6. Write Programs to implement the Queue operations using Liked List.
- 7. Write a program for arithmetic expression evaluation.
- 8. Write a program for Binary Search Tree Traversals
- 9. Write a program to implement dequeue using a doubly linked list.
- 10. Write a program to search an item in a given list using the following Searching Algorithms
 - a. Linear Search
 - b. Binary Search.
- 11. Write a program for implementation of the following Sorting Algorithms
 - a. Bubble Sort
 - b. Insertion Sort
 - c. Quick Sort
- 12. Write a program for polynomial addition using single linked list
- 13. Write a program to find out shortest path between given Source Node and Destination Node in a given graph using Dijkstrar's algorithm.

- 14. Write a program to implement Depth First Search graph traversals algorithm
- 15. Write a program to implement Breadth First Search graph traversals algorithm

DATABASE MANAGEMENT SYSTEMS

Semester	Course Code	Course Title	Hours	Credits
III	С3	DATABASE MANAGEMENT	60	3
		SYSTEMS		

Course Objective:

The objective of the course is to introduce the design and development of databases with special emphasis on relational databases.

Course Learning Outcomes:

On completing the subject, students will be able to:

- 1. Gain knowledge of Database and DBMS.
- 2. Understand the fundamental concepts of DBMS with special emphasis on relational data model.
- 3. Demonstrate an understanding of normalization theory and apply such knowledge to the normalization of a database
- 4. Model database using ER Diagrams and design database schemas based on the model.
- 5. Create a small database using SQL.
- 6. Store, Retrieve data in database.

UNIT I

Overview of Database Management System: Introduction to data, information, database, database management systems, file-based system, Drawbacks of file-Based System, database approach, Classification of Database Management Systems, advantages of database approach, Various Data Models, Components of Database Management System, three schema architecture of data base, costs and risks of database approach.

UNIT II

Entity-Relationship Model: Introduction, the building blocks of an entity relationship diagram, classification of entity sets, attribute classification, relationship degree, relationship classification, reducing ER diagram to tables, enhanced entity-relationship model (EER

model), generalization and specialization, **IS** A relationship and attribute inheritance, multiple inheritance, constraints on specialization and generalization, advantages of ER modeling.

UNIT III

Relational Model: Introduction, CODD Rules, relational data model, concept of key, relational integrity, relational algebra, relational algebra operations, advantages of relational algebra, limitations of relational algebra, relational calculus, tuple relational calculus, domain relational Calculus (DRC), Functional dependencies and normal forms upto 3rd normal form.

UNIT IV

Structured Query Language: Introduction, History of SQL Standard, Commands in SQL, Data Types in SQL, Data Definition Language, Selection Operation, Projection Operation, Aggregate functions, Data Manipulation Language, Table Modification Commands, Join Operation, Set Operations, View, Sub Query.

UNIT V

PL/SQL: Introduction, Shortcomings of SQL, Structure of PL/SQL, PL/SQL Language Elements, Data Types, Operators Precedence, Control Structure, Steps to Create a PL/SQL, Program, Iterative Control, Procedure, Function, Database Triggers, Types of Triggers.

BOOKS:

- Database System Concepts by Abraham Silberschatz, Henry Korth, and S. Sudarshan, McGrawhill
- 2. Database Management Systems by Raghu Ramakrishnan, McGrawhill
- 3. Principles of Database Systems by J. D. Ullman
- 4. Fundamentals of Database Systems by R. Elmasri and S. Navathe
- 5. SQL: The Ultimate Beginners Guide by Steve Tale.

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

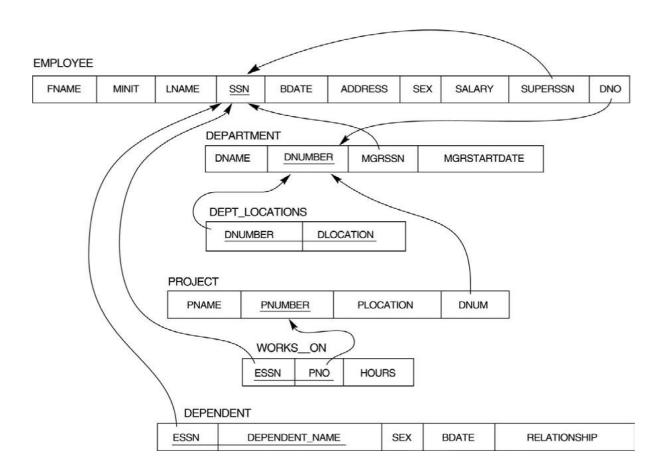
A. Measurable

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity))
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- 4. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity

B. General

- 1. Group Discussion
- 2. Try to solve MCQ's available online.
- 3. Others

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:


- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Practical assignments and laboratory reports,
- 4. Observation of practical skills,

- 5. Individual and group project reports like Create your college database for placement purpose.
- 6. Efficient delivery using seminar presentations,
- 7. Viva voce interviews.
- 8. Computerized adaptive testing, literature surveys and evaluations,
- 9. Peers and self-assessment, outputs form individual and collaborative work

Semester	Course Code	Course Title	Hours	Credits
III	С3-Р	DATABASE MANAGEMENT	30	2
		SYSTEMS LAB		

- 1. Draw ER diagram for hospital administration
- 2. Creation of college database and establish relationships between tables
- 3. Relational database schema of a company is given in the following figure.

Relational Database Schema - COMPANY

Questions to be performed on above schema

- 1. Create above tables with relevant *Primary Key, Foreign Key and other constraints*
- 2. Populate the tables with data
- 3. Display all the details of all employees working in the company.
- 4. Display ssn, lname, fname, address of employees who work in department no 7.

- 5. Retrieve the *Birthdate and Address* of the employee whose name is 'Franklin T. Wong'
- 6. Retrieve the name and salary of every employee
- 7. Retrieve all distinct salary values
- 8. Retrieve all employee names whose address is in 'Bellaire'
- 9. Retrieve all employees who were born during the 1950s
- 10. Retrieve all employees in department 5 whose salary is between 50,000 and 60,000(inclusive)
- 11. Retrieve the names of all employees who do not have supervisors
- 12. Retrieve SSN and department name for all employees
- 13. Retrieve the name and address of all employees who work for the 'Research' department
- 14. For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birth date.
- 15. For each employee, retrieve the employee's name, and the name of his or her immediate supervisor.
- 16. Retrieve all combinations of Employee Name and Department Name
- 17. Make a list of all project numbers for projects that involve an employee whose last name is 'Narayan' either as a worker or as a manager of the department that controls the project.
- 18. Increase the salary of all employees working on the 'ProductX' project by 15%. Retrieve employee name and increased salary of these employees.
- 19. Retrieve a list of employees and the project name each works in, ordered by the employee's department, and within each department ordered alphabetically by employee first name.
- 20. Select the names of employees whose salary does not match with salary of any employee in department 10.
- 21. Retrieve the employee numbers of all employees who work on project located in Bellaire, Houston, or Stafford.
- 22. Find the sum of the salaries of all employees, the maximum salary, the minimum salary, and the average salary. Display with proper headings.
- 23. Find the sum of the salaries and number of employees of all employees of the 'Marketing' department, as well as the maximum salary, the minimum salary, and the average salary in this department.

- 24. Select the names of employees whose salary is greater than the average salary of all employees in department 10.
- 25. Delete all dependents of employee whose ssn is '123456789'.
- 26. Perform a query using alter command to drop/add field and a constraint in Employee table.

OBJECT ORIENTATED PROGRAMMING THROUGH JAVA

Semester	Course Code	Course Title	Hours	Credits
IV	C4	OBJECT ORIENTATED	60	3
		PROGRAMMING THROUGH		
		JAVA		

Objectives:

To introduce the fundamental concepts of Object-Oriented programming and to design & implement object oriented programming concepts in Java.

Course Learning Outcomes: At the end of this course student will:

- 1. Understand the benefits of a well-structured program
- 2. Understand different computer programming paradigms
- 3. Understand underlying principles of Object-Oriented Programming in Java
- **4.** Develop problem-solving and programming skills using OOP concepts
- **5.** Develop the ability to solve real-world problems through software development in high-level programming language like Java

UNIT - I

Introduction to Java: Features of Java, The Java virtual Machine, Parts of Java

Naming Conventions and Data Types: Naming Conventions in Java, Data Types in Java, Literals

Operators in Java: Operators, Priority of Operators

Control Statements in Java: if... else Statement, do... while Statement, while Loop, for Loop, switch Statement, break Statement, continue Statement, return Statement

Input and Output: Accepting Input from the Keyboard, Reading Input with Java.util.Scanner Class, Displaying Output with System.out.printf(), Displaying Formatted Output with String.format()

Arrays: Types of Arrays, Three Dimensional Arrays (3D array), arrayname.length, Command Line Arguments

UNIT - II

Strings: Creating Strings, String Class Methods, String Comparison, Immutability of Strings **Introduction to OOPs:** Problems in Procedure Oriented Approach, Features of Object-Oriented Programming System (OOPS)

Classes and Objects: Object Creation, Initializing the Instance Variables, Access Specifiers, Constructors

Methods in Java:Method Header or Method Prototype, Method Body, Understanding Methods, Static Methods, Static Block, The keyword 'this', Instance Methods, Passing Primitive Data Types to Methods, Passing Objects to Methods, Passing Arrays to Methods, Recursion, Factory Methods

Inheritance: Inheritance, The keyword 'super', The Protected Specifier, Types of Inheritance

UNIT – III

Polymorphism: Polymorphism with Variables, Polymorphism using Methods, Polymorphism with Static Methods, Polymorphism with Private Methods, Polymorphism with Final Methods, final Class

Type Casting: Types of Data Types, Casting Primitive Data Types, Casting Referenced Data Types, The Object Class

Abstract Classes: Abstract Method and Abstract Class

Interfaces: Interface, Multiple Inheritance using Interfaces

Packages: Package, Different Types of Packages, The JAR Files, Interfaces in a Package, Creating Sub Package in a Package, Access Specifiers in Java, Creating API Document

Exception Handling: Errors in Java Program, Exceptions, throws Clause, throw Clause, Types of Exceptions, Re – throwing an Exception

UNIT - IV

Streams: Stream, Creating a File using FileOutputStream, Reading Data from a File usingFileInputStream, Creating a File using FileWriter, Reading a File using FileReader, Zipping and Unzipping Files, Serialization of Objects, Counting Number of Characters in a File, File Copy, File Class

Threads: Single Tasking, Multi Tasking, Uses of Threads, Creating a Thread and Running it, Terminating the Thread, Single Tasking Using a Thread, Multi Tasking Using Threads, Multiple Threads Acting on Single Object, Thread Class Methods, Deadlock of Threads,

Thread Communication, Thread Priorities, thread Group, Daemon Threads, Applications of Threads, Thread Life Cycle

UNIT - V

Applets: Creating an Applet, Uses of Applets, <APPLET> tag, A Simple Applet, An Applet with Swing Components, Animation in Applets, A Simple Game with an Applet, Applet Parameters

Java Database Connectivity: Database Servers, Database Clients, JDBC (Java Database Connectivity), Working with Oracle Database, Working with MySQL Database, Stages in a JDBC Program, Registering the Driver, Connecting to a Database, Preparing SQL Statements, Using jdbc—odbc Bridge Driver to Connect to Oracle Database, Retrieving Data from MySQL Database, Retrieving Data from MS Access Database, Stored Procedures and CallableStatements, Types of Result Sets

BOOKS:

- 1. Core Java: An Integrated Approach, Authored by Dr. R. Nageswara Rao &Kogent Learning Solutions Inc.
- 2. E.Balaguruswamy, Programming with JAVA, A primer, 3e, TATA McGraw-Hill Company.
- 3. John R. Hubbard, Programming with Java, Second Edition, Schaum's outline Series, TMH.
- 4. Deitel& Deitel. Java TM: How to Program, PHI (2007)

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

A. Measurable

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity))
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- 4. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity

B. General

- 1. Group Discussion
- 2. Try to solve MCQ's available online.
- 3. Others

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Programming exercises,

- 4. Practical assignments and laboratory reports,
- 5. Observation of practical skills,
- 6. Individual and group project reports.
- 7. Efficient delivery using seminar presentations,
- 8. Viva voce interviews.
- 9. Computerized adaptive testing, literature surveys and evaluations,
- 10. Peers and self-assessment, outputs form individual and collaborative work

Semester	Course Code	Course Title	Hours	Credits
IV	C4-P	OBJECT ORIENTATED	30	2
		PROGRAMMING THROUGH		
		JAVA LAB		

- Write a program to read Student Name, Reg.No, Marks[5] and calculate Total,
 Percentage, Result. Display all the details of students
- 2. Write a program to perform the following String Operations
 - a. Read a string
 - b. Find out whether there is a given substring or not
 - c. Compare existing string by another string and display status
 - d. Replace existing string character with another character
 - e. Count number of works in a string
- 3. Java program to implements Addition and Multiplication of two N X N matrices.
- **4.** Java program to demonstrate the use of Constructor.
- **5.** Calculate area of the following shapes using method overloading.
 - a. Triangle
 - b. Rectangle
 - c. Circle
 - d. Square
- **6.** Implement inheritance between *Person* (*Aadhar*, *Surname*, *Name*, *DOB*, *and Age*) and *Student* (*Admission Number*, *College*, *Course*, *Year*)classes where ReadData(), DisplayData() are overriding methods.
- **7.** Java program for implementing Interfaces
- **8.** Java program on Multiple Inheritance.
- **9.** Java program for to display *Serial Number from 1 to N* by creating two Threads
- **10.** Java program to demonstrate the following exception handlings
 - a. Divided by Zero
 - b. Array Index Out of Bound
 - c. File Not Found
 - d. Arithmetic Exception
 - e. User Defined Exception

- **11.** Create an Applet to display different shapes such as Circle, Oval, Rectangle, Square and Triangle.
- 12. Write a program to create *Book* (*ISBN*, *Title*, *Author*, *Price*, *Pages*, *Publisher*) structure and store book details in a file and perform the following operations
 - a. Add book details
 - b. Search a book details for a given ISBN and display book details, if available
 - c. Update a book details using ISBN
 - d. Delete book details for a given ISBN and display list of remaining Books

OPERATING SYSTEMS

Semester	Course Code	Course Title	Hours	Credits
IV	C5	OPERATING SYSTEMS	60	2

Objectives:

This course aims to introduce the structure and organization of a file system. It emphasizes various functions of an operating system like memory management, process management, device management, etc.

Course Learning Outcomes:

Upon successful completion of the course, a student will be able to:

- 1. Know Computer system resources and the role of operating system in resource management with algorithms
- 2. Understand Operating System Architectural design and its services.
- 3. Gain knowledge of various types of operating systems including Unix and Android.
- 4. Understand various process management concepts including scheduling, synchronization, and deadlocks.
- 5. Have a basic knowledge about multithreading.
- 6. Comprehenddifferent approaches for memory management.
- 7. Understand and identify potential threats to operating systems and the security features design to guard against them.
- 8. Specify objectives of modern operating systems and describe how operating systems have evolved over time.
- 9. Describe the functions of a contemporary operating system

UNIT- I

What is Operating System? History and Evolution of OS, Basic OS functions, Resource Abstraction, Types of Operating Systems—Multiprogramming Systems, Batch Systems, Time Sharing Systems; Operating Systems for Personal Computers, Workstations and Hand-held Devices, Process Control & Real time Systems.

UNIT-II

Processor and User Modes, Kernels, System Calls and System Programs, System View of the Process and Resources, Process Abstraction, Process Hierarchy, Threads, Threading Issues, Thread Libraries; Process Scheduling, Non-Preemptive and Preemptive Scheduling Algorithms.

UNIT III

Process Management: Deadlock, Deadlock Characterization, Necessary and Sufficient Conditions for Deadlock, Deadlock Handling Approaches: Deadlock Prevention, Deadlock Avoidance and Deadlock Detection and Recovery.

Concurrent and Dependent Processes, Critical Section, Semaphores, Methods for Interprocess Communication; Process Synchronization, Classical Process Synchronization Problems: Producer-Consumer, Reader-Writer.

UNIT IV

Memory Management: Physical and Virtual Address Space; Memory Allocation Strategies—Fixed and -Variable Partitions, Paging, Segmentation, Virtual Memory.

UNIT V

File and I/O Management, OS security: Directory Structure, File Operations, File Allocation Methods, Device Management, Pipes, Buffer, Shared Memory, Security Policy Mechanism, Protection, Authentication and Internal Access Authorization

Introduction to Android Operating System, Android Development Framework, Android Application Architecture, Android Process Management and File System, Small Application Development using Android Development Framework.

REFERENCE BOOKS:

- Operating System Principles by Abraham Silberschatz, Peter Baer Galvin and Greg Gagne (7thEdition) Wiley India Edition.
- 2. Operating Systems: Internals and Design Principles by Stallings (Pearson)
- 3. Operating Systems by J. Archer Harris (Author), Jyoti Singh (Author) (TMH)
- 4. Online Resources for UNIT V

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

A. Measurable

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity))
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- 4. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity

B. General

- 1. Group Discussion
- 2. Try to solve MCQ's available online.
- 3. Others

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Programming exercises,
- 4. Practical assignments and laboratory reports,
- 5. Observation of practical skills,
- 6. Individual and group project reports.

- 7. Efficient delivery using seminar presentations,
- 8. Viva-Voce interviews.
- 9. Computerized adaptive testing, literature surveys and evaluations,
- 10. Peers and self-assessment, outputs form individual and collaborative work

Semester	Course Code	Course Title	Hours	Credits
IV	C-5	OPERATING SYSTEMS LAB	30	2
		USING C/Java		

- 1. Write a program to implement Round Robin CPU Scheduling algorithm
- 2. Simulate SJF CPU Scheduling algorithm
- 3. Write a program the FCFS CPU Scheduling algorithm
- 4. Write a program to Priority CPU Scheduling algorithm
- 5. Simulate Sequential file allocation strategies
- 6. Simulate Indexed file allocation strategies
- 7. Simulate Linked file allocation strategies
- 8. Simulate MVT and MFT memory management techniques
- 9. Simulate Single level directory File organization techniques
- 10. Simulate Two level File organization techniques
- 11. Simulate Hierarchical File organization techniques
- 12. Write a program for Bankers Algorithm for Dead Lock Avoidance
- 13. Implement Bankers Algorithm Dead Lock Prevention.
- 14. Simulate all Page replacement algorithms.
 - a) FIFO
 - b) LRU
 - c) LFU
- 15. Simulate Paging Techniques of memory management

SUBJECT EXPERTS

Dr.M.Ussenaiah
Dept of Computer Science,
Vikrama Simhapuri University

Dr.A.Kavitha, Govt. Degree College, Repalle

SYLLABUS VETTED BY

Dr. Gangadhar,
Dept of Computer Science
Acgharya Nagarjuna University,
Nagarjuna Nagar

ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

(A Statutory body of the Government of Andhra Pradesh)
Revised UG Syllabus Under CBCS
(Implemented from Academic Year 2020-21)
PROGRAMME: FOUR YEAR B.Sc. (Hons)

Domain Subject: COMPUTER SCIENCE

Skill Enhancement Courses (SECs) for Semester V, from 2022-23 (Syllabus with Learning Outcomes, References, Co-curricular Activities)

<u>Structure of SECs for Semester – V</u>

(To choose one pair from the three alternate pairs of SECs)

Univ Code	Course Number 6 & 7	Name of Course	Hours/ Week Theo+Prac	Credits Theo+Prac	Marks IA – 20 Filed Work 05	Sem End
	6A	Web Interface Designing Technologies	3 + 3	3+2	25	75
	7A	Web Applications Development using PHP& MYSQL	3 + 3	3 + 2	25	75
			OR			
	6B	Internet of Things	3 + 3	3+ 2	25	75
	7B	Application Development using Python	3 + 3	3 + 2	25	75
			OR			
	6C	Data science	3 + 3	3+ 2	25	75
	7C	Python for Data science	3 + 3	3 + 2	25	75

Note-1: For Semester–V, for the domain subject Computer Science **any one** of the **three** pairs of SECs shall be chosen as courses 6 and 7, i.e., 6A & 7A or 6B & 7B or 6C & 7C. The pair shall not be broken (ABCD allotment is random, not on any priority basis).

Note-2: One of the main objectives of Skill Enhancement Courses (SEC) is to inculcate field related skills of the domain subject in students. The syllabus of SEC will be partially skill oriented. Hence, teachers shall also impart practical training to students on the skills embedded in syllabus citing related real field situations.

A.P. State Council of Higher Education Semester-wise Revised Syllabus under CBCS, 2020-21

Course Code:

Four-year B.Sc.(Hons)
Domain Subject: **Computer Science**IV Year B. Sc.(Hons) – Semester – V

Max Marks: 100 + 50

Course 6A: Web Interface Designing Technologies

(Skill Enhancement Course (Elective), Credits: 05)

- **I. Learning Outcomes:** Students after successful completion of the course will be able to:
 - 1. Understand and appreciate the web architecture and services.
 - 2. Gain knowledge about various components of a website.
 - 3. Demonstrate skills regarding creation of a static website and an interface to dynamic website.
 - 4. Learn how to install word press and gain the knowledge of installing various plugins to use in their websites.
- **II. Syllabus:** (Total Hours: 90 including Teaching, Lab, and Field training, Unit tests etc.)

Unit - I (10 hours)

HTML: Introduction to web designing, difference between web applications and desktop applications, introduction to HTML, HTML structure, elements, attributes, headings, paragraphs, styles, colours, HTML formatting, Quotations, Comments, images, tables, lists, blocks and classes, HTML CSS, HTML frames, file paths, layout, symbols, HTML responsive.

Unit – **II** (10 hours)

HTML forms: HTML form elements, input types, input attributes, HTML5, HTML graphics, HTML media – video, audio, plug INS, you tube.

HTML API'S: Geo location, Drag/drop, local storage, HTML SSE.

CSS: CSS home, introduction, syntax, colours, back ground, borders, margins, padding, height/width, text, fonts, icons, tables, lists, position, over flow, float, CSS combinators, pseudo class, pseudo elements, opacity, tool tips, image gallery, CSS forms, CSS counters, CSS responsive.

Unit – III (10 hours)

Client side Validation: Introduction to JavaScript - What is DHTML, JavaScript, basics, variables, string manipulations, mathematical functions, statements, operators, arrays, functions. Objects in JavaScript - Data and objects in JavaScript, regular expressions, exception handling. DHTML with JavaScript - Data validation, opening a new window, messages and confirmations, the status bar, different frames, rollover buttons, moving images.

Unit – IV (10 hours)

Word press: Introduction to word press, servers like wamp, bitnami e.tc, installing and configuring word press, understanding admin panel, working with posts and pages, using editor, text formatting with shortcuts, working with media-Adding, editing, deleting media elements, working with widgets, menus.

Unit – **V** (10 hours)

Working with themes-parent and child themes, using featured images, configuring settings, user and user roles and profiles, adding external links, extending word press with plug-ins. Customizing the site, changing the appearance of site using css, protecting word press website from hackers.

III. References

- 1. Chris Bates, Web Programming Building Internet Applications, Second Edition, Wiley (2007)
- 2. Paul S.WangSanda S. Katila, an Introduction to Web Design plus Programming, Thomson (2007).
- 3. Head First HTML and CSS, Elisabeth Robson, Eric Freeman, O'Reilly Media Inc.
- 4. An Introduction to HTML and JavaScript: for Scientists and Engineers, David R. Brooks. Springer, 2007
- 5. Schaum's Easy Outline HTML, David Mercer, Mcgraw Hill Professional.
- 6. Word press for Beginners, Dr.Andy Williams.
- 7. Professional word press, Brad Williams, David damstra, Hanstern.
- 8. Web resources:
 - a. http://www.codecademy.com/tracks/web
 - b. http://www.w3schools.com
 - c. https://www.w3schools.in/wordpress-tutorial/
 - **d.** http://www.homeandlearn.co.uk
- 9. Other web sources suggested by the teacher concerned and the college librarian including reading material.

IV. Co-Curricular Activities

- **a) Mandatory:** (Training of students by teacher in field related skills: (lab: 10 + field: 05):
- 1. **For Teacher**: Field related training of students by the teacher in laboratory/field for not less than 15 hours on identifying the case study to build a website, designing the format, structure, menus, submenus etc for a website and finally to build a website.
- 2. **For Student**: Students shall (individually) search online and visit any of the agencies like hotels, hospitals, super bazaars, organizations, etc. where there is a need for a website and identify any one case study and submit a hand-written Fieldwork/Project work/Project work/Project work/Project work/Project work/Project work Report not exceeding 10 pages. Example: Choosing a firm or business to develop a website, identifying various business entities to be included in the website, identifying menu bar and content to be placed in their websites.
- 3. Max marks for Fieldwork/Project work/Project work/Proj
- 4. Suggested Format for Fieldwork/Project work/Project wo
- 5. Unit tests (IE).

b) Suggested Co-Curricular Activities

- 1. Build a website with 10 pages for the case study identified.
- 2. Training of students by related industrial experts.
- 3. Assignments
- 4. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
- 5. Presentation by students on best websites.

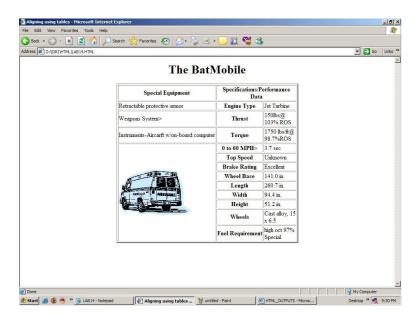
Course 6A: Web Interface Designing Technologies – <u>PRACTICAL SYLLABUS</u>

V. Learning Outcomes:

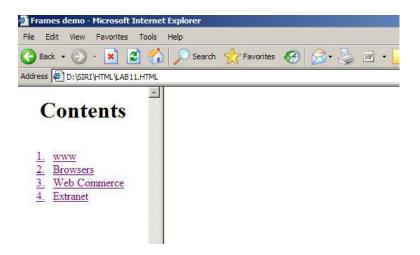
On successful completion of this practical course, student shall be able to:

- 1. Create a basic website with the help of HTML and CSS.
- 2. Acquire the skill of installing word press and various plugins of Word press.
- 3. Create a static website with the help of Word press.
- 4. Create an interface for a dynamic website.
- 5. Apply various themes for their websites using Word press.

VI. Practical (Laboratory) Syllabus: (30 hrs.)


HTML and CSS:

- 1. Create an HTML document with the following formatting options:
 - (a)Bold, (b) Italics, (c) Underline, (d) Headings (Using H1 to H6 heading styles), (e) Font (Type, Size and Color), (f) Background (Colored background/Image in background), (g) Paragraph, (h) Line Break, (i) Horizontal Rule, (j) Pre tag
 - 2. Create an HTML document which consists of:
 - (a) Ordered List (b) Unordered List (c) Nested List (d) Image
 - 3. Create a Table with four rows and five columns. Place an image in one column.
 - 4. Using "table" tag, align the images as follows:



- 5. Create a menu form using html.
- 6. Style the menu buttons using css.
- 7. Create a form using HTML which has the following types of controls:
 - (a) Text Box (b) Option/radio buttons (c) Check boxes (d) Reset and Submit buttons
 - 8. Embed a calendar object in your web page.

- 9. Create an applet that accepts two numbers and perform all the arithmetic operations on them.
- 10. Create nested table to store your curriculum.
- 11. Create a form that accepts the information from the subscriber of a mailing system.
- 12. Design the page as follows:

13. Create a help file as follows:

- 14. Create a webpage containing your bio data (assume the form and fields).
- 15. Write a html program including style sheets.
- 16. Write a html program to layers of information in web page.
- 17. Create a static webpage.

Word press:

- 18. Installation and configuration of word press.
- 19. Create a site and add a theme to it.
- 20 Create a child theme
- 21. Create five pages on COVID-19 and link them to the home page. .
- 22. Create a simple post with featured image.
- 23. Add an external video link with size 640 X 360.
- 24. Create a user and assign a role to him.
- 25. Create a login page to word press using custom links

26. Create a website for your college.

Course Code:

Four -year B.Sc.(Hons)

Domain Subject: **Computer Science**IV Year B. Sc.(Hons) – Semester – V

Max Marks: 100 + 50

Course 7A: Web Applications Development using PHP & MYSQL

(Skill Enhancement Course (Elective), Credits: 05)

I. Learning Outcomes:

Students after successful completion of the course will be able to:

- 1. Write simple programs in PHP.
- 2. Understand how to use regular expressions, handle exceptions, and validate data using PHP
- 3. Apply In-Built functions and Create User defined functions in PHP programming.
- 4. Write PHP scripts to handle HTML forms.
- 5. Write programs to create dynamic and interactive web based applications using PHP and MYSQL.
- 6. Know how to use PHP with a MySQL database and can write database driven web pages.
- **II. Syllabus:** (Total Hours: 90 including Teaching, Lab, and Field training, Unit tests etc.)

Unit-1: (10 hours)

The Building blocks of PHP: Variables, Data Types, Operators and Expressions, Constants. Flow Control Functions in PHP: Switching Flow, Loops, Code Blocks and Browser Output. Working with Functions: What is function?, Calling functions, Defining Functions, Returning the values from User-Defined Functions, Variable Scope, Saving state between Function calls with the static statement, more about arguments.

Unit-2: (10 hours)

Working with Arrays: What are Arrays? Creating Arrays, Some Array-Related Functions. Working with Objects: Creating Objects, Object Instance Working with Strings, Dates and Time: Formatting strings with PHP, Investigating Strings with PHP, Manipulating Strings with PHP, Using Date and Time Functions in PHP.

Unit-3: (10 hours)

Working with Forms: Creating Forms, Accessing Form Input with User defined Arrays, Combining HTML and PHP code on a single Page, Using Hidden Fields to save state, Redirecting the user, Sending Mail on Form Submission, and Working with File Uploads. Working with Cookies and User Sessions: Introducing Cookies, Setting a Cookie with PHP, Session Function Overview, Starting a Session, Working with session variables, passing session IDs in the Query String, Destroying Sessions and Unsetting Variables, Using Sessions in an Environment with Registered Users.

Unit-4: (10 hours)

Working with Files and Directories: Including Files with inclue(), Validating Files, Creating and Deleting Files, Opening a File for Writing, Reading or Appending, Reading from Files, Writing or Appending to a File, Working with Directories, Open Pipes to and from Process Using popen(), Running Commands with exec(), Running Commands with system() or passthru().

Working with Images: Understanding the Image-Creation Process, Necessary Modifications to PHP, Drawing a New Image, Getting Fancy with Pie Charts, Modifying Existing Images, Image Creation from User Input.

Unit-5: (10 hours)

Interacting with MySQL using PHP: MySQL Versus MySQLi Functions, Connecting to MySQL with PHP, Working with MySQL Data. Creating an Online Address Book: Planning and Creating Database Tables, Creating Menu, Creating Record Addition Mechanism, Viewing Records, Creating the Record Deletion Mechanism, Adding Sub-entities to a Record.

III. References

- **1.** Julie C. Meloni, SAMS Teach yourself PHP MySQL and Apache, Pearson Education (2007).
- 2. Steven Holzner, PHP: The Complete Reference, McGraw-Hill
- **3.** Robin Nixon, Learning PHP, MySQL, JavaScript, CSS & HTML5, Third Edition O'reilly, 2014
- **4.** Xue Bai Michael Ekedahl, The web warrior guide to Web Programming, Thomson (2006).
- **5.** Web resources:
 - e. http://www.codecademy.com/tracks/php
 - f. http://www.w3schools.com/PHP
 - g. http://www.tutorialpoint.com
- 6. Other web sources suggested by the teacher concerned and the college librarian including reading material.

- **a) Mandatory:** (Training of students by teacher in field related skills: (lab: 10 + field: 05):
- 1. **For Teacher**: Field related training of students by the teacher in laboratory/field for not less than 15 hours on demonstrating various **interactive and dynamic websites** available online, addressing the students on identifying the case study to build an interactive and database driven website, forms to be used in website, database to be maintained, reports to be produced, etc.
- 2. **For Student**: Students shall (individually) search online and visit any of the agencies like malls, hotels, super bazaars, etc. where there is a need for an interactive and database driven website and submit a hand-written Fieldwork/Project work/Project work/Pr
- 3. Max marks for Fieldwork/Project work/Project work/Proj

- 4. Suggested Format for Fieldwork/Project work/Project wo
- 5. Unit tests (IE).

- 1. Arrange expert lectures by IT experts working professionally in the area of web content development
- 2. Assignments (in writing or implementing contents related to syllabus or outside the syllabus. Shall be individual and challenging)
- 3. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
- 4. Preparation by students on best websites.
- 5. Arrange a webpage development competition among small groups of students.

Course 7A: Web Applications Development using PHP & MYSQL-PRACTICAL SYLLABUS

V. Learning Outcomes:

On successful completion of this practical course, student shall be able to:

- 1. Write, debug and implement the Programs by applying concepts and error handling techniques of PHP.
- 2. Create an interactive and dynamic website.
- 3. Create a website with reports generated from a database.
- 4. Write programs to create an interactive website for e-commerce sites like online shopping, etc.

VI. Practical (Laboratory) Syllabus: (30 hrs.)

- 1. Write a PHP program to Display "Hello"
- 2. Write a PHP Program to display the today's date.
- 3. Write a PHP program to display Fibonacci series.
- 4. Write a PHP Program to read the employee details.
- 5. Write a PHP program to prepare the student marks list.
- 6. Write a PHP program to generate the multiplication of two matrices.
- 7. Create student registration form using text box, check box, radio button, select, submit button. And display user inserted value in new PHP page.
- 8. Create Website Registration Form using text box, check box, radio button, select, submit button. And display user inserted value in new PHP page.
- 9. Write PHP script to demonstrate passing variables with cookies.
- 10. Write a program to keep track of how many times a visitor has loaded the page.
- 11. Write a PHP application to add new Rows in a Table.
- 12. Write a PHP application to modify the Rows in a Table.
- 13. Write a PHP application to delete the Rows from a Table.
- 14. Write a PHP application to fetch the Rows in a Table.
- 15. Develop an PHP application to implement the following Operations

- i. Registration of Users.
- ii. Insert the details of the Users.
- iii. Modify the Details.
- iv. Transaction Maintenance.
 - a) No of times Logged in
 - b) Time Spent on each login.
 - c) Restrict the user for three trials only.
 - d) Delete the user if he spent more than 100 Hrs of transaction.
- 16. Write a PHP script to connect MySQL server from your website.
- 17. Write a program to read customer information like cust-no, cust-name, itempurchased, and mob-no, from customer table and display all these information in table format on output screen.
- 18. Write a program to edit name of customer to "Kiran" with cust-no =1, and to delete record with cust-no=3.
- 19. Write a program to read employee information like emp-no, emp-name, designation and salary from EMP table and display all this information using table format in your website.
- 20. Create a dynamic web site using PHP and MySQL.

Course Code:

Four -year B.Sc.(Hons)

Domain Subject: **Computer Science**IV Year B. Sc.(Hons) – Semester – V

Max Marks: 100 + 50

Course 6B: INTERNET OF THINGS

(Skill Enhancement Course (Elective), Credits: 05)

- **I.** Learning Outcomes: Students after successful completion of the course will be able to:
 - 1. Appreciate the technology for IoT
 - 2. Understand various concepts, terminologies and architecture of IoT systems.
 - 3. Understand various applications of IoT
 - 4. Learn how to use various sensors and actuators for design of IoT.
 - 5. Learn how to connect various things to Internet.
 - 6. Learn the skills to develop simple IOT Devices.
- **II. Syllabus:** (Total Hours: 90 including Teaching, Lab, Field training, Unit tests etc.)

Unit - I (10 hours)

Fundamentals of IoT: Introduction, Definitions & Characteristics of IoT, IoT Architectures, Physical & Logical Design of IoT, Enabling Technologies in IoT, History of IoT, About Things in IoT, The Identifiers in IoT, About the Internet in IoT, IoT frameworks, IoT and M2M.

Applications of IoT: Home Automation, Smart Cities, Energy, Retail Management, Logistics, Agriculture, Health and Lifestyle, Industrial IoT, Legal challenges, IoT design Ethics, IoT in Environmental Protection.

Unit - II (10 hours)

Sensors Networks: Definition, Types of Sensors, Types of Actuators, Examples and Working, IoT Development Boards: Arduino IDE and Board Types, RaspberriPi Development Kit, RFID Principles and components, Wireless Sensor Networks: History and Context, The node, Connecting nodes, Networking Nodes, WSN and IoT.

Unit - III (10 hours)

Wireless Technologies for IoT: WPAN Technologies for IoT: IEEE 802.15.4, Zigbee, HART, NFC, Z-Wave, BLE, Bacnet And Modbus.

IP Based Protocols for IoT IPv6, 6LowPAN, LoRA, RPL, REST, AMPQ, CoAP, MQTT. Edge connectivity and protocols.

Unit - IV (10 hours)

Arduino Simulation Environment: Arduino Uno Architecture, Setting up the IDE, Writing Arduino Software, Arduino Libraries, Basics of Embedded C programming for Arduino, Interfacing LED, push button and buzzer with Arduino, Interfacing Arduino with LCD.

Sensor & Actuators with Arduino: Overview of Sensors working, Analog and Digital Sensors, Interfacing of Temperature, Humidity, Motion, Light and Gas Sensors with Arduino, Interfacing of Actuators with Arduino, Interfacing of Relay Switch and Servo Motor with Arduino.

Unit - V (10 hours)

Developing IOT's: Implementation of IoT with Arduino, Connecting and using various IoT Cloud Based Platforms such as Blynk, Thingspeak, AWS IoT, Google Cloud IoT Core etc. Cloud Computing, Fog Computing, Privacy and Security Issues in IoT.

III. References

- 9. Internet of Things A Hands-on Approach, ArshdeepBahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547
- 10. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-onApproach)", 1st Edition, VPT, 2014
- 11. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978-1-118-47347-4, Willy Publications
- 12. Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press
- 13. Open source software / learning websites
 - a. https://github.com/connectIOT/iottoolkit
 - b. https://www.arduino.cc/
 - c. https://onlinecourses.nptel.ac.in/noc17 cs22/course
 - d. http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html
 - e. Contiki (Open source IoT operating system)
 - f. Ardudroid (open source IoT project)
 - g. https://blynk.io (Mobile app)
 - h. IoT Toolkit (smart object API gateway service reference implementation)
- 6. Other web sources suggested by the teacher concerned and the college librarian including reading material.

- **a) Mandatory:** (Training of students by teacher in field related skills: (lab: 10 + field: 05):
- 1. **For Teacher**: Field related training of students by the teacher in laboratory/field for not less than 15 hours on identifying the case study for the IoT, design an IoT solution, build physical IoT device, connect it to a mobile app and deploy the IoT device.
- 2. **For Student**: Students shall (individually) search online and visit any of the places like aquaculture farms, agencies using IOT devices, etc to identify problems for IoT solution and submit a hand-written Fieldwork/Project work/Project work/Projec
- 3. Max marks for Fieldwork/Project work/Project work/Proj
- 4. Suggested Format for Fieldwork/Project work/Project wo
- 5. Unit tests (IE).

- 1. Training of students by related industrial experts.
- 2. Assignments
- 3. Preparation and presentation of power-point slides, which include videos, animations, pictures, graphics, etc by the students.
- 4. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
- 5. Field visits to identify the problems for IoT solutions.

Course 6B: Internet of Things – PRACTICAL SYLLABUS

V. Learning Outcomes:

On successful completion of this practical course, student shall be able to:

- 1. Acquire the skills to design a small IoT device.
- 2. Connect various sensors, actuators, etc to Arduino board.
- 3. Connect the things to Internet
- 4. Design a small mobile app to control the sensors.
- 5. Deploy a simple IoT device.

VI. Practical (Laboratory) Syllabus: (30 hrs)

- 1. Understanding Arduino UNO Board and Components
- 2. Installing and work with Arduino IDE
- 3. Blinking LED sketch with Arduino
- 4. Simulation of 4-Way Traffic Light with Arduino
- 5. Using Pulse Width Modulation
- 6. LED Fade Sketch and Button Sketch
- 7. Analog Input Sketch (Bar Graph with LEDs and Potentiometre)
- 8. Digital Read Serial Sketch (Working with DHT/IR/Gas or Any other Sensor)
- 9. Working with Adafruit Libraries in Arduino
- 10. Spinning a DC Motor and Motor Speed Control Sketch
- 11. Working with Shields
- 12. Design APP using Blink App or Things peak API and connect it LED bulb.
- 13. Design APP Using Blynk App and Connect to Temperature, magnetic Sensors.

Course Code:

Four-year B.Sc.(Hons)
Domain Subject: **Computer Science**IV Year B. Sc.(Hons) – Semester – V

Max Marks: 100 + 50

Course 7B: APPLICATION DEVELOPMENT USING PYTHON

(Skill Enhancement Course (Elective), Credits: 05)

- **I. Learning Outcomes:** Students after successful completion of the course will be able to:
 - 1. Understand and appreciate the web architecture and services.
 - 2. Examine Python syntax and semantics and be fluent in the use of Python flow control and functions.
 - 3. Demonstrate proficiency in handling Strings and File Systems.
 - 4. Create, run and manipulate Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.
 - 5. Interpret the concepts of Object-Oriented Programming as used in Python.
 - 6. Apply concepts of Python programming in various fields related to IOT, Web Services and Databases in Python.
- **II. Syllabus:** (*Total Hours:* 90 including Teaching, Lab, Field training, Unit tests etc.)

Unit - I (10 hours)

Python basics, Objects- Python Objects, Standard Types, Other Built-in Types, Internal Types, Standard Type Operators, Standard Type Built-in Functions, Categorizing the Standard Types, Unsupported Types

Numbers - Introduction to Numbers, Integers, Floating Point Real Numbers, Complex Numbers, Operators, Built-in Functions, Related Modules

Sequences - Strings, Lists, and Tuples, Mapping and Set Types

Unit – **II** (10 hours)

Files: File Objects, File Built-in Function [open()], File Built-in Methods, File Built-in Attributes, Standard Files, Command-line Arguments, File System, File Execution, Persistent Storage Modules, Related Modules

Exceptions: Exceptions in Python, Detecting and Handling Exceptions, Context Management, Exceptions as Strings, Raising Exceptions, Assertions, Standard Exceptions, Creating Exceptions, Why Exceptions (Now)?, Why Exceptions at All?, Exceptions and the sys Module, Related Modules

Modules: Modules and Files, Namespaces, Importing Modules, Importing Module Attributes, Module Built-in Functions, Packages, Other Features of Modules

Unit – III (10 hours)

Regular Expressions: Introduction, Special Symbols and Characters, Res and Python Multithreaded Programming: Introduction, Threads and Processes, Python, Threads, and the Global Interpreter Lock, Thread Module, Threading Module, Related Modules

GUI Programming: Introduction, Tkinter and Python Programming, Brief Tour of Other GUIs, Related Modules and Other GUIs

Web Programming: Introduction, Wed Surfing with Python, Creating Simple Web Clients, Advanced Web Clients, CGI-Helping Servers Process Client Data, Building CGI Application, Advanced CGI, Web (HTTP) Servers

Unit – **V** (10 hours)

Database Programming: Introduction, Python Database Application Programmer's Interface (DBAPI), Object Relational Managers (ORMs), Related Modules

III. References

- 1. Core Python Programming, Wesley J. Chun, Second Edition, Pearson.
- 2. Think Python, Allen Downey, Green Tea Press.
- 3. Introduction to Python, Kenneth A. Lambert, Cengage.
- 4. Python Programming: A Modern Approach, Vamsi Kurama, Pearson.
- 5. Learning Python, Mark Lutz, O' Really.
- 6. Web sources suggested by the teacher concerned and the college librarian including reading material.

IV. Co-Curricular Activities:

- **a) Mandatory:** (Training of students by teacher in field related skills: (lab: 10 + field: 05)
- 1. **For Teacher**: Training of students by the teacher in laboratory/field for not less than 15 hours on field related skills like building an IOT device with the help of Python.
- 2. **For Student**: Students shall (individually) identity the method to link their IOT project done in Paper 7A with Python and submit a hand-written Fieldwork/Project work/Project work/Project work/Project work/Project work/Project work Report not exceeding 10 pages. It should include a brief report on the selected case study of IOT device, algorithm and Python program to operate the IOT device.
- 3. Max marks for Fieldwork/Project work/Project work/Proj
- 4. Suggested Format for Fieldwork/Project work/Project wo
- 5. Unit tests (IE).

b) Suggested Co-Curricular Activities

- 1. Training of students by related industrial experts.
- 2. Assignments
- 3. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
- 4. Presentation by students on best websites.

Course 7B: Application Development Using Python-PRACTICAL SYLLABUS

V. Learning Outcomes:

On successful completion of this practical course, student shall be able to:

- 1. Implement simple programs in Python
- 2. Implement programs related to various data structures like lists, dictionaries, etc.
- 3. Implement programs related to files.

4. Implement applications related to databases, Web services and IOT.

VI. Practical (Laboratory) Syllabus: (30 hrs.)

- 1. Write a menu driven program to convert the given temperature from Fahrenheit to Celsius and vice versa depending upon user's choice.
- 2. Write a python program to calculate total marks, percentage and grade of a student. Marks obtained in each of the three subjects are to be input by the user. Assign grades according to the following criteria:

Grade A: Percentage >=80

Grade B: Percentage>=70 and <80

Grade C: Percentage>=60 and <70

Grade D: Percentage>=40 and <60

Grade E: Percentage<40

- 3. Write a python program to display the first n terms of Fibonacci series.
- 4. Write a python program to calculate the sum and product of two compatible matrices.
- 5. Write a function that takes a character and returns True if it is a vowel and False otherwise.
- 6. Write a menu-driven program to create mathematical 3D objects
 - I. curve
 - II. sphere
 - III. cone
 - IV. arrow
 - V. ring
 - VI. Cylinder.
- 7. Write a python program to read n integers and display them as a histogram.
- 8. Write a python program to display sine, cosine, polynomial and exponential curves.
- 9. Write a python program to plot a graph of people with pulse rate p vs. height h. The values of P and H are to be entered by the user.
- 10. Write a python program to calculate the mass m in a chemical reaction. The mass m (in gms) disintegrates according to the formula m=60/(t+2), where t is the time in hours. Sketch a graph for t vs. m, where t>=0.
- 11. A population of 1000 bacteria is introduced into a nutrient medium. The population p grows as follows:

```
P(t) = \frac{15000(1+t)}{15+e}
```

- 12. Where the time t is measured in hours. WAP to determine the size of the population at given time t and plot a graph for P vs t for the specified time interval.
- 13. Input initial velocity and acceleration, and plot the following graphs depicting equations of motion:
 - I. velocity wrt time (v=u+at)
 - II. distance wrt time (s=u*t+0.5*a*t*t)

- III. distance wrt velocity (s=(v*v-u*u)/2*a)
- 14. Write a program that takes two lists and returns True if they have at least one common member.
- 15. Write a Python program to print a specified list after removing the 0th, 2nd, 4th and 5th elements.
- 16. Write a program to implement exception handling.
- 17. Try to configure the widget with various options like: bg="green", family="times", size=20.
- 18. Write a Python program to read last 5 lines of a file.
- 19. Design a simple database application that stores the records and retrieve the same
- 20. Design a database application to search the specified record from the database.
- 21. Design a database application to that allows the user to add, delete and modify the records.

Course Code:

Four-year B.Sc.(Hons)
Domain Subject: **Computer Science**IV Year B. Sc.(Hons) – Semester – V

Max Marks: 100 + 50

Course 6C: DATA SCIENCE

(Skill Enhancement Course (Elective), Credits: 05)

- **I.** Learning Outcomes: Students after successful completion of the course will be able to:
 - 1. Develop relevant programming abilities.
 - 2. Demonstrate proficiency with statistical analysis of data.
 - 3. Develop the ability to build and assess data-based models.
 - 4. Demonstrate skill in data management
 - 5. Apply data science concepts and methods to solve problems in real-world contexts and will communicate these solutions effectively

II. Syllabus: ((Total Hours: 90 including Teaching, Lab, Field training, Unit tests etc.)

UNIT I (10 hours)

Introduction: The Ascendance of Data, What is Data Science? , Finding key Connectors, Data Scientists You May Know, Salaries and Experience, Paid Accounts, Topics of Interest, Onward.

Python: Getting Python, The Zen of Python, Whitespace Formatting, Modules, Arithmetic, Functions, Strings, Exceptions, Lists, Tuples, Dictionaries, Sets, Control Flow, Truthiness, Sorting, List Comprehensions, Generators and Iterators, Randomness, Object – Orienting Programming, Functional Tools, enumerate, zip and Argument Unpacking, args and kwargs, Welcome to Data Sciencester!

Visualizing Data: matplotlib, Bar charts, Line charts, Scatterplots.

Linear Algebra: Vectors, Matrices

UNIT II (10 hours)

Statistics: Describing a Single Set of Data, Correlation, Simpson's Paradox, some Other Correlation Caveats, Correlation and Causation.

Probability: Dependence and Independence, Conditional Probability, Bayes's Theorem, Random Variables, Continuous Distributions, The Normal Distribution, The Central Limit Theorem.

Hypothesis and Inference: Statistical Hypothesis Testing, Example: Flipping a Coin, Confidence Intervals, P-hacking, Example: Running an A/B Test, Bayesian Inference.

Gradient Descent: The Idea behind Gradient Descent, Estimating the Gradient, Using the Gradient, Choosing the Right Step Size, Putting It All Together, Stochastic Gradient Descent.

UNIT III (10 hours)

Getting Data: stdin and stdout, Reading Files – The Basics of Text Files, Delimited Files, Scraping the Web - HTML and the parsing Thereof, Example: O'Reilly Books About Data, Using APIs – JSON (and XML), Using an Unauthenticated API, Finding APIs.

Working with Data: Exploring Your Data, Exploring One-Dimensional Data, Two Dimensions Many Dimensions, Cleaning and Munging, Manipulating Data, Rescaling, Dimensionality Reduction.

Machine Learning: Modeling, What Is Machine Learning? Over fitting and under fitting, Correctness, The Bias-Variance Trade-off, Feature Extraction and Selection

UNIT IV (10 hours)

K-Nearest Neighbors: The Model, Example: Favorite Languages, The Curse of Dimensionality.

Naive Bayes: A Really Dumb Spam Filter, A More Sophisticated Spam Filter, Implementation, Testing Our Model.

Simple Linear Regression: The Model, Using Gradient Descent, Maximum Likelihood Estimation.

Multiple Regression: The Model, Further Assumptions of the Least Squares Model, Fitting the Model, Interpreting the Model, Goodness of Fit.

UNIT V (10 hours)

Logistic Regression: The Problem, The Logistic Function, Applying the Model, Goodness of Fit Support Vector Machines.

Decision Trees: What Is a Decision Tree? Entropy, The Entropy of a Partition, Creating a Decision Tree, Putting It All Together, Random Forests.

Neural Networks: Perceptron, Feed-Forward Neural Networks And Back propagation, Example: Defeating a CAPTCHA.

Clustering: The Idea, The Model, Example: Meetups , Choosing k, Example: Clustering Colors, Bottom-up Hierarchical Clustering.

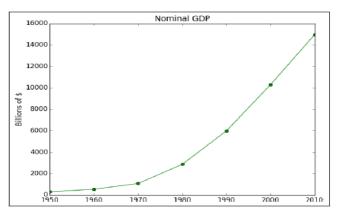
III. References

- 1. Data Science from Scratch by Joel Grus O'Reilly Media
- 2. Wes McKinney, "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython", O'Reilly, 2nd Edition, 2018.
- 3. Jake VanderPlas, "Python Data Science Handbook: Essential Tools for Working with Data", O'Reilly, 2017.
- 4. Web resources:
 - a. https://www.edx.org/course/analyzing-data-with-python
 - b. http://math.ecnu.edu.cn/~lfzhou/seminar/[Joel Grus] Data Science from Scr atch_First_Princ.pdf
- 5. 9. Other web sources suggested by the teacher concerned and the college librarian including reading material.

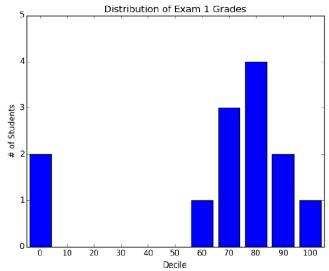
- **a) Mandatory:** (*Training of students by teacher in field related skills:* (*lab:10 + field: 05*):
- 1. **For Teacher**: Field related training of students by the teacher in laboratory/field for not less than 15 hours on identifying, analyzing and presenting the data and then to predict the future instances.
- 2. **For Student**: Students shall (individually) search online and visit any of the agencies like Statistical cell, weather forecasting centers, pollution control boards, manufacturing industries, agriculture departments, etc. to observe the manual process going on to collect the data, maintain the data, present the data and to predict the data for future instances and submit a hand-written Fieldwork/Project work/Project work/Project work/Project work Report not exceeding 10 pages.

- 3. Max marks for Fieldwork/Project work/Project work/Proj
- 4. Suggested Format for Fieldwork/Project work/Project wo
- 5. Unit tests (IE).

- 1. Training of students by related industrial experts.
- 2. Assignments
- 3. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
- 4. Presentation by students in related topics.


Course 6C: Data Science – PRACTICAL SYLLABUS

V. Learning Outcomes: On successful completion of this practical course, student shall be able to:


- 1. Apply data science solutions to real world problems.
- 2. Implement the programs to get the required data, process it and present the outputs using Python language.
- 3. Execute statistical analyses with Open source Python software.

VI. Practical (Laboratory) Syllabus: (30 hrs.)

1. Write a Python program to create a line chart for values of year and GDP as given below

2. Write a Python program to create a bar chart to display number of students secured different grading as given below

- 3. Write a Python program to create a time series chart by taking one year month wise stock data in a CSV file
- 4. Write a Python program to plot distribution curve
- 5. Import a CSV file and perform various Statistical and Comparison operations on rows/columns. Write a python program to plot a graph of people with pulse rate p vs. height h. The values of P and H are to be entered by the user.
- 6. Import rainfall data of some location with the help of packages available in R Studio and plot a chart of your choice.

21

Course Code:

Four -year B.Sc.(Hons)

Domain Subject: **Computer Science**IV Year B. Sc.(Hons) – Semester – V

Max Marks: 100 + 50

Course 7C: Python for Data Science

(Skill Enhancement Course (Elective), Credits: 05)

- **I.** Learning Outcomes: Students after successful completion of the course will be able to:
 - 1. Identify the need for data science and solve basic problems using Python built-in data types and their methods.
 - 2. Design an application with user-defined modules and packages using OOP concept
 - 3. Employ efficient storage and data operations using NumPy arrays.
 - 4. Apply powerful data manipulations using Pandas.
 - 5. Do data pre-processing and visualization using Pandas
- **II. Syllabus:** (Total Hours: 90 including Teaching, Lab, Field training, Unit tests etc.)

Unit - I (10 hours)

Introduction to Data Science - Why Python? - Essential Python libraries - Python Introduction- Features, Identifiers, Reserved words, Indentation, Comments, Built-in Data types and their Methods: Strings, List, Tuples, Dictionary, Set - Type Conversion- Operators. Decision Making- Looping- Loop Control statement- Math and Random number functions. User defined functions - function arguments & its types.

UNIT –II (10 hours)

User defined Modules and Packages in Python- Files: File manipulations, File and Directory related methods - Python Exception Handling.

OOPs Concepts -Class and Objects, Constructors - Data hiding- Data Abstraction-Inheritance.

UNIT –III (10 hours)

NumPy Basics: Arrays and Vectorized Computation- The NumPy ndarray- Creating ndarrays- Data Types for ndarrays- Arithmetic with NumPy Arrays- Basic Indexing and Slicing - Boolean Indexing-Transposing Arrays and Swapping Axes.

Universal Functions: Fast Element-Wise Array Functions- Mathematical and Statistical Methods-Sorting- Unique and Other Set Logic.

UNIT –IV (10 hours)

Introduction to pandas Data Structures: Series, Data Frame and Essential Functionality: Dropping Entries- Indexing, Selection, and Filtering- Function Application and Mapping-Sorting and Ranking.

Summarizing and Computing Descriptive Statistics- Unique Values, Value Counts, and Membership. Reading and Writing Data in Text Format

UNIT –V (10 hours)

Data Cleaning and Preparation: Handling Missing Data - Data Transformation: Removing Duplicates, Transforming Data Using a Function or Mapping, Replacing Values, Detecting and Filtering Outliers- String Manipulation: Vectorized String Functions in pandas. Plotting with pandas: Line Plots, Bar Plots, Histograms and Density Plots, Scatter or Point Plots.

III. References

- 1. Y. Daniel Liang, "Introduction to Programming using Python", Pearson, 2012.
- 2. Wes McKinney, "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython", O'Reilly, 2nd Edition, 2018.
- 3. Jake VanderPlas, "Python Data Science Handbook: Essential Tools for Working with Data", O'Reilly, 2017.
- 4. Wesley J. Chun, "Core Python Programming", Prentice Hall, 2006.
- 5. Mark Lutz, "Learning Python", O'Reilly, 4th Edition, 2009.
- 6. Web resources:
 - a. https://www.edx.org/course/python-basics-for-data-science
 - b. https://www.edx.org/course/analyzing-data-with-python
 - c. https://www.coursera.org/learn/python-plotting?specialization=data-science-python
 - d. https://www.programmer-books.com/introducing-data-science-pdf/
 - e. https://www.cs.uky.edu/~keen/115/Haltermanpythonbook.pdf
- 7. Other web sources suggested by the teacher concerned and the college librarian including reading material.

- **a) Mandatory:** (*Training of students by teacher in field related skills:* (*lab:10 + field: 05*):
- 1. **For Teacher**: Field related training of students by the teacher in laboratory/field for not less than 15 hours on collecting the data, analyzing the data and presenting the data using Python language with some real time data.
- 2. **For Student**: Students shall (individually) visit any of the agencies like Agriculture dept, statistical cell, irrigation department, Ground water department, CPO office, Rural Water Supply and Sanitation department etc or search online to get real time data like Aids database, weather forecasting database, social networking data, etc and identify any one database, implement and present the necessary charts in Python language and submit a handwritten Fieldwork/Project work/Project work/Project work/Project work Report not exceeding 10 pages. Example: Identifying a database, get the data, present the data in required charts and to predict the future instances if possible.
- 3. Max marks for Fieldwork/Project work/Project work/Proj
- 4. Suggested Format for Fieldwork/Project work/Project wo
- 5. Unit tests (IE).

- 2. Training of students by related industrial experts.
- 3. Assignments
- 4. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
- 5. Presentation by students on the topics within and outside the syllabus.

Course 7C: Python for Data Science – PRACTICAL SYLLABUS

V. Learning Outcomes: On successful completion of this practical course, student shall be able to:

- 1. Implement simple programs in Python.
- 2. Implement programs related to various structures like arrays, lists, Data frames, etc.
- 3. Implement programs related to files.
- 4. Implement applications related to data science.

VI. Practical (Laboratory) Syllabus: (30 hrs.)

- 1. Perform Creation, indexing, slicing, concatenation and repetition operations on Python built-in data types: Strings, List, Tuples, Dictionary, Set
- 2. Apply Python built-in data types: Strings, List, Tuples, Dictionary, Set and their methods to solve any given problem.
- 3. Handle numerical operations using math and random number functions
- 4. Create user-defined functions with different types of function arguments.
- 5. Create packages and import modules from packages.
- 6. Perform File manipulations- open, close, read, write, append and copy from one file to another.
- 7. Write a program for Handle Exceptions using Python Built-in Exceptions
- 8. Write a program to implement OOP concepts like Data hiding and Data Abstraction.
- 9. Create NumPy arrays from Python Data Structures, Intrinsic NumPy objects and Random Functions.
- 10. Manipulation of NumPy arrays- Indexing, Slicing, Reshaping, Joining and Splitting.
- 11. Computation on NumPy arrays using Universal Functions and Mathematical methods.
- 12. Load an image file and do crop and flip operation using NumPy Indexing.
- 13. Create Pandas Series and Data Frame from various inputs.
- 14. Import any CSV file to Pandas Data Frame and perform the following:
 - (a) Visualize the first and last 10 records
 - (b) Get the shape, index and column details
 - (c) Select/Delete the records (rows)/columns based on conditions.
 - (d) Perform ranking and sorting operations.
 - (e) Do required statistical operations on the given columns.

- (f) Find the count and uniqueness of the given categorical values.
- (g) Rename single/multiple columns
- 15. Import any CSV file to Pandas Data Frame and perform the following:
 - (a) Handle missing data by detecting and dropping/filling missing values.
 - (b) Transform data using apply () and map() method.
 - (c) Detect and filter outliers.
 - (d) Perform Vectorized String operations on Pandas Series.
 - (e) Visualize data using Line Plots, Bar Plots, Histograms, Density Plots and Scatter Plots.

Draft Syllabus prepared by:

1. Dr. A.V. Kavitha, Asst. Professor in Computer Science, Government Degree College for Women, Guntur.

2. Dr. M. Hussainaiah, Asst. Professor, Department of Computer Science, Vikram Simhapuri University, Nellore.
